Optical effects of clouds on trace-gas absorption

Joanna Joiner, Alexander Vasilkov, K. Bhartia, Robert Spurr, Nick Krotkov, Jerry Ziemke, Sushil Chandra, Pieternel Levelt, Graeme Stephens

atmospheric absorption

oud fraction cometric) and optical depth rface albedo and vertical structure

→ Radiative cloud fra

Radiative cloud pr

nition: Fraction of measured radiation that is scattered by clo

$$f_R = f_g \frac{I_c}{I_m}$$

ere I_c and I_m are the cloudy and measured (total) radiances, respective normalized by solar irradiance) and f_a is the geometrical cloud fraction

It can be shown approximately that

$$\tau_m^{abs} = \tau_c^{abs} f_R + \tau_s^{abs} (1 - f_R)$$

$$\therefore N_m = N_c f_R + N_s (1 - f_R)$$

ud is brighter than the surrounding atmosphere then f_R>f_g.

on-absorbing atmosphere, f_R increases with λ (I_m decreases to change).

ne computed with simple cloud models

mbertian-equivalent reflectivity (LER): Surfactory (LER): Surfacto

ked LER: Pixel is composed of weighted clear a udy components; In OMI algorithms, clouds are sumed to have R=0.8; Proper weighting via f counts for light scattered from beneath the cloud ne-Parallel Cloud (PPC): Use Mie scattering t h a horizontally infinite and vertically homogene ud with an effective optical depth (related to f_r). ced PPC: Similar to Mixed LER but uses PPC r

cloud

Rayleigh scattering with simple cloud models?

- Rayleigh scatt can be described well by simple MLER model varameter (no significantly af by cloud vertication structure)
- Implication: Maneed subpixel imager on futurinstrument

adiative cloud fraction conce vork for trace-gas absorption

Cloudsat (A-train) helps us to answer

MODIS: sensitive to cloud-top (not appropriate for UV-VIS trace-gas retrievals)

OMI simulated from Cloudsat

at optical depth profiles

OMI radiative cloud pres Raman scattering: UV/vi penetrates deeper

Ontical denth

Optical de

neaks in li

ignificant photon penetration inside clouds

CLOUD SLICING MEASUREMENTS OF OZONE INSIDE THICK CLOUDS

A-train cloud synergy

DOAS retrievals use cloud pressures from O₂-O₂ TOMS currently uses cloud climatology from therm can have significant errors over bright clouds); nex ion (and TOMS reprocessing) will use OMI-derived atology estimate radiative cloud fraction from UV/VIS ctances or radiance ratio, cloud pressures from Rai tering, O_2 - O_2 , or O_2 absorption. iative cloud pressure is distinct from (IR) cloud-top ificant photon penetration inside clouds use these concepts e.g. to retrieve in-cloud mixing

ain provides unique opportunity to combine cloud mation to derive information about cloud vertical education different passive sensors and validate with active sors.